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Clustering

Clustering:

“unsupervised learning”

requires data, but no labels

detect patterns, e.g.
online search results
customer shoppint patterns
effect of pollution
animal behaviours
cells, tissues, etc
regions of images

common initial analysis: useful
when you have no idea

how to interpret results?
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Clustering algorithms

Partitioning algorithms:

k-means

mixture models

spectral custering

Hierarchical algorithms:

bottom-up, agglomerative

top-down, divisive
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Examples of clustering

Clustering gene expression data:
Find clusters of cells with similar biological expression
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K-means

An iterative algorithm:

Initialise: pich K random
points as cluster centers

Alternate:
assign data points to closest
cluster center
change the cluster center to
the average of its assigned
points

Stop: when there is no change
in assignments
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K-means
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Mixture Models

Consider the following mixture model

g(y ;ψ) =
K

∑
j=1

pj fj(y ;θj)

where

ψ = (θ1, · · · ,θK ,p1, · · · ,pK )
pj ≥ 0 for j = 1, · · · ,K
∑j pj = 1.

fj(·) is any probability distribution

These models provide a flexible tool for statistical inference (even in a
nonparametric setting, see Lindsay (1995), Roeder (1992) and Roeder and
Wasserman (1997)).
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Mixture models
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We need a prior distribution!

Often in Bayesian inference, we want to reduce the effect of the prior on
the posterior distribution, in case we do not have strong prior information.

Sometimes so-called “improper” priors are used∫
Θ

π(θ)dθ = ∞.

This is not a pdf (or a pmf), therefore the Bayes’ theorem cannot be
applied.

However they are used in practice as limit of proper prior distributions,
when the assure a proper posterior distribution.
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Default priors for mixture models

It is delicate to produce a noninformative prior for the parameters of a
mixture model, since they are often improper.
Why can’t we use improper priors?
Example:
Consider independent improper priors

π(θ1, · · · ,θK ) ∝

K

∏
j=1

π(θj)

such that
∫
Θ π(θj)dθj = ∞
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Classical noninformative solutions - contd

The mixture model is a classical example of latent variable model, then it
can be rewritten as

g(y ;ψ) = ∑
S=Sk

K

∏
j=1

f (y ;S ,θj)π(θj)π(S | p)π(p)

where the summation runs over all kN possible classifications S .
Then the complete-data likelihood is non-informative if there is an empty
component (let’s say the j-th)∫

∏
i :Si=j

f (yi ;θj)π(θj)dθj ∝

∫
π(θj)dθj = ∞
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Random partition models

A random partition model is a probability distribution over Pn

{p(ρn = (S1, . . . ,SK )) : ρn ∈ Pn}

One main approach is to to define p(ρn) through discrete random
probability measures

f (y1, . . . ,yn|θ1, . . . ,θn) =
n

∏
i=1

f (yi |θi )

θ1, . . . ,θn|G
i .i .d .∼ G

G ∼ discrete RPM

For example, if G (·) = ∑
K
h=1 phδψh

with P(∑K
h=1 ph = 1) = 1, then

g(yi |{ψh}) =
K

∑
h=1

phf (yi |ψh)
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Random partition models

Discreteness of G implies existence of ties among θ1, . . . ,θn

If ψ1, . . . ,ψK denote the corresponding unique values then we can
define ρn through indicators given as

ci = j ⇔ θi = ψj or equivalently θi = ψci

and so Sj = {i ∈ [n] : θi = ψj}, where [n] = {1, . . . ,n} is the set of n
indices.

This is an induced random partition model.
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Is it easy to define a prior over the partition space?

ρn = (S1, . . . ,SK ) a partition of [n] into K = |ρn| ≥ 1 nonempty (and
mutually exclusive) subsets;

Pn: set of all partitions of [n];

the size of Pn increases as the Bell number; e.g. B10 = 115,975
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Finite mixture models

Consider K ∼ pK (k)

yi |K = k ,p1, . . . ,pK ,θ1, . . . ,θK
i .i .d .∼

K

∑
h=1

phf (yi |θh)

θ1, . . . ,θk |K = k
i .i .d .∼ p0(θ)

(p1, . . . ,pk)|K = k ∼ Dir(γ, . . . ,γ)

The induced partition model is then

p(ρn = (S1, . . . ,SK )) =

(
∞

∑
h=1

h(k)

(γh)(n)
pK (h)

)(
∏

s∈(S1,...,SK )
γ
|s|

)

where x (m) = x(x+1) . . .(x+m−1) and
x(m) = x(x−1) . . .(x−m+1).
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CASE 1: Overfitted mixtures

One approach consists in fixing K to a large value and use inference
to estimate some of the weights as equal to zero, in order to identify
the correct k < K number of clusters.

Playing on the prior for (p1, . . . ,pK )

[Rousseau and Mengersen (2011)] show the asymptotic behaviour of
the posterior distribution in a mixture model for overfitted mixtures:
the posterior distribution concentrates on a sparse representation of
the true density; this is exhibited by a subset of componenets that
adequately describe the density remaining and any superfluous
components becoming empty.

IMPORTANT: need for a prior on the weigths that favour small
weights (Dirichlet with parameters 1/2).
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[Grazian & Robert, 2018] Jeffreys’ prior for mixture models

We recall that the Jeffreys prior was introduced by Jeffreys (1939) as a
default prior based on the Fisher information matrix

π
J(θ ,p) ∝ |I (θ ,p)|1/2 = det

(
Eg

[
− d2

dψ2
logg(y ;p,θ)

])1/2

when using the Jeffreys’ prior for all the parameters of the model, the
posterior is improper (OH NO!)

but when the Jeffreys’ prior is used only for the weights, it can be
shown that it leads to the same results as Rousseau & Mengersen
(2011)!
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Jeffreys prior for the weights

Instead, we fix the Jeffreys prior only for the weights conditionally on the
other parameters

π
J(p1, . . . ,pK |θ1, . . . ,θK ) ∝ |I (p1, . . . ,pK )|1/2
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The galaxy dataset
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CASE 2: A prior on the number of the # of components

The induced partition model is then

p(ρn = (S1, . . . ,SK )) =

(
∞

∑
h=1

h(k)

(γh)(n)
pK (h)

)(
∏

s∈(S1,...,SK )
γ
|s|

)

where x (m) = x(x+1) . . .(x+m−1) and x(m) = x(x−1) . . .(x−m+1).

C. Grazian (USyd) Bayesian clustering 10 September 2022 21 / 46



A prior on the number of components

For model

g(y ;ψ) =
K

∑
j=1

pj fj(y ;θj)

the prior can be specified as

π(k ,p,θ) = pK (k)π(p | k)π(θ | k).

The posterior for k is then given by

pK (k | y) ∝

∫
f (y | k ,p,θ)×pK (k)π(p | k)π(θ | k)dpdθ .
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Some difficulties

Although for practical purposes the range of values K can take is
finite, it may be appropriate to define a prior over N.

In fact, by truncating the support of K there may be possible
distortions of the posterior around the boundary, affecting the
inferential results.

BUT the prior on K must be proper, as proved by Nobile (2005).

Remember the inconsistency problems in the nonparametric setting
- see Miller and Harrison (2014).
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Possible prior distributions

K ∼ Unif (0,30) (Richardson and Green, 1997)

K ∼ Pois(1) (Nobile and Fearnside, 2007)

K ∼ BNB(1,a,b)
(Grazian et al. 2020, Früwirth-Schnatter et al., 2021)

Früwirth-Schnatter et al. (2021) propose to combine a prior on K with
an adaptive prior on the weights (p1, . . . ,pK )∼ Dir( α

K , . . . , α

K ) —
“dynamic” version of the mixtures
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Possible prior distributions

Früwirth-Schnatter et al., 2021
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A loss-based prior [Grazian et al., 2020]

Idea: inconsistency problems can be prevented by penalising larger values
→ we can define the prior on K with a loss-based approach.

To obtain the loss-based prior on K , we define the prior on K by
assigning a prior on the space of models determined by the mixtures with
k = 1,2, . . . components.

we can assign a worth to each mixture

we include a component of loss due to the complexity of the model

Loss(k) = LossI (k)+LossC (k)
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A loss-based prior: information loss [Grazian et al., 2020]

The quantification of the loss comes from Berk (1966): if the model is
misspecified, the posterior distribution asymptotically tends to accumulate
at the most similar model so to minimise the loss in information, in terms
of Kullback-Leibler divergence
If we consider a mixture Ms = {gs(x |ψs),πs(ψs)} (where ψs = (ps ,θs)

LossI (k) = Eπs

{
inf

ψm,m ̸=j
DKL

(
gs(x |ψs)∥gm(x |ψm)

)}
,

The above loss is linked to the prior mass by means of the self-information
loss function which associate a loss to a probability statement. As such,

pK (k) ∝ exp{LossI (k)} .

The loss attains its minimum at zero: Consider mixture
gk = ∑

k
j=1 pj fj(x |θj) and gk+1 = ∑

k
j=1 p̆j fj(x |θ̆j)+ p̆k+1fk+1(x |θ̆k+1); the

minimum is obtained when p̆j = pj and θ̆j = θj and p̆k+1 = 0.
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A loss-based prior: complexity loss [Grazian et al., 2020]

To fully describe the worth of a mixture model it is also necessary to take
into consideration its complexity.

If we keep the mixture model with k components, the loss would be
related to the number of parameters that have to be estimated, and
therefore the number of components.

LossC (k) = U(keep k) =−c ·k .

Therefore,
pK (k) ∝ exp{−c ·k} ,

where c > 0 is included as loss functions are defined up to a constant.
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A reparametrization

Theorem

Consider the prior distribution for the number of components of a finite
mixture model, where we set p = exp{−c} and k = 1,2, . . .. If we choose
p ∼ Beta(α,β ), with α,β > 0, then

pK (k |p) = pk−1(1−p),

which is a geometric distribution with parameter 1−p, and

pK (k) =
Γ(α +β )

Γ(α)Γ(β )

Γ(k+β −1)Γ(α +1)

Γ(k+α +β )
,

which is a beta-negative-binomial distribution where the number of failures
before the experiment is stopped is equal to 1, and shape parameters α

and β .

The linear complexity loss is a choices; other choices are also possible.
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A loss-based prior

The prior pK (k) just defined

is defined on the whole support of K , N
is proper

has moments

E(K ) = E(E{K |p}) = E(p−1) =
α +β −1

α −1
, for α > 1,

Var(K ) = E(Var{K |p})+Var(E{K |p}) = αβ (α +β −1)

(α −2)(α −1)2
, for α > 2.

where β can be used to control how many components we assume a
priori and α can be used to control the variance.

C. Grazian (USyd) Bayesian clustering 10 September 2022 30 / 46



The galaxy dataset

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Galaxy Dataset

k

P
ro
ba
bi
lit
y

0.0

0.2

0.4

0.6

0.8
Objective
Poisson
Uniform

C. Grazian (USyd) Bayesian clustering 10 September 2022 31 / 46



CASE 3: Introducing covariates

Suppose that the observations depend on a covariate, e.g. they are
time-dependent. → we can use hidden Markov models!
Let

{t1, t2, . . . , tT} ≡ T : set of observed time points

y = {yt}t∈T : the data

c= {ct}t∈T : a latent variable indicating the cluster each observation
belongs to, with ct ∈ {1,2, . . . ,K} ≡ K and K

We assume that the data come from a mixture-type model

g(y|c,{θ k}k∈K ) = ∏
t∈T

∏
k∈K

f (yt |θk)
Ik (ct)

i.e. given the latent variables c, the observations yt are independent.
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Logit-normal process

One possible solution

g(y|c,{θ k}k∈K ) = ∏
t∈T

∏
k∈K

f (yt |θk)
Ik (ct),

ct ∼ Discrete(pt),

p(t)∼ LogitGP(A,µ(t),C (h))

So that the probabilities pt = {pt,k}k∈K are discrete-time observations of
an underlying and non-observed continuous-time process p(t).

We have that

A is a co-regionalization matrix

µ(t) is a mean function

C(h) is a correlation function with h being a temporal distance
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LogitN distribution and LogitGP

[Aitchison, 1986] proposed the LogitN distribution to model compositional
data as an alternative to the Dirichlet distribution.

The vector pt is defined as

pt,k =
eωt,k

∑
K
j=1 e

ωt,j
, k ∈ 1, . . . ,K

where ωt,k are real valued variables.

Remark: adding a constant to each ωt,k produces the same vector of
probabilities, and an identifiability constraint is therefore needed; the
K−th element is set to zero (ωt,K = 0) treated as the reference element.

ωt can be the realisation of a K −1 dimensional GP ω(t).
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The covariance of the pt

Attention must be paid! The covariance among each element and the sum
of all the element is

Cov(pt,k ,pt,1+ · · ·+pt,k + · · ·+pt,K ) = 0

where pt,1+ · · ·+pt,k + · · ·+pt,K = 1. Therefore we have

−Var(pt,k) =
K

∑
h=1
k ̸=h

Cov(pt,k ,pt,h).

Aitchison (1986) pointed out that a more consistent measure of
dependence between compositional elements can be measure as

τij ,kl(t, t
′) = Cov

(
log

pt,i
pt,k

, log
pt ′,j
pt ′,l

)
, i , j ,k , l ∈ 1, . . . ,K ,
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The covariance of the pt

Let’s keep things simple and suppose that pt ∼ LogitN(µt ,Σt), where µt

is K −1 dimensional vector and Σt is a (K −1)× (K −1) square matrix.
It can be proved that a LogitN process has independent components
(in term of log-ratio), i.e. τij ,kl(t, t

′) = 0 for arbitrary i , j , k and l , at
time lag |t− t ′| only if the variance of the Gaussian variable is

Σt,t ′ =


a1(t,t

′)+aK (t,t
′) aK (t,t

′) . . . aK (t,t
′)

aK (t,t
′) a2(t,t

′)+aK (t,t
′) . . . aK (t,t

′)
. . . . . . . . . . . .

aK (t,t
′) aK (t,t

′) . . . aK−1(t,t
′)+aK (t,t

′)


where the element [Σt,t ′ ]i ,j is τij ,KK (t, t

′).

The elements of p are iid if µt = 0 and

Σt,t ′ =


2a a . . . a
a 2a . . . a
. . . . . . . . . . . .
a a . . . 2a
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A new parametrization [Mastrantonio et al., 2019]

We introduce an auxiliary K -dimensional GP γ(t), From γ(t), we

construct ω(t) as

ωk(t) = γk(t)− γK (t),

γ(t) = µ(t)+Aγ
∗(t),

γ
∗
k(t)∼ GP(0,Ck(h)).

where

A is a coregionalization matrix, which we require to be non-negative
definite and symmetric

µ(t) is a mean function

C (h) is a vector of correlation functions
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Covariance structure

Matrix A introduces dependence between the elements of γ(t), and

Σ= AA′

is the covariance of γ(t).

The explicit relation between A and Σ is

A=∆Ξ
1
2∆′,

where

∆ is the matrix of the eigenvectors of Σ

Ξ is the diagonal matrix of the eigenvalues of Σ

Then
p(t)∼ LogitGP(A,µ(t),C (h))
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Identifiability issues

It is important to highlight that γ(t) is not identifiable and any inference
about pt is in fact made by looking at ωt through equation.

pt,k =
eγt,k−γt,K

∑
K
j=1 e

γt,j−γt,K
=

eγt,k

∑
K
j=1 e

γt,j
, k ∈ 1, . . . ,K .

With respect to the case where ωt,K must be set to zero, this equation has
a more symmetric form, since all the components of pt are written in
terms of exponentials of γk(t) and there is no reference element.
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Advantages

It can be proved that this model assures

invariance from the choice of the reference element;

invariance with respect to the reordering of the labels;

the expected structure of the covariance matrix among times, when
defined on τij ,kl(t, t

′) elements.
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CASE 4: infinite mixtures

A mixture model can be extended to consider infinite components:

yi |θi ∼ f (yi |θi ) i = 1, . . . ,n

θi |G ∼ G

G |α,G0 ∼ DP(α,G0),

and, since G is almost surely discrete, this model can be rewritten as

yi ∼
∞

∑
h=1

πhf (yi |ψh) i = 1, . . . ,n

where ψ1,ψ2, . . . are independent draws from the base distribution G0.

C. Grazian (USyd) Bayesian clustering 10 September 2022 41 / 46



Partitions for infinite mixtures

The EPPF of the DP is explicitly available; if G ∼ DP(α,G0), then

p(ρn = (S1, . . . ,SK )) =
αK

∏
K
h=1 (nh−1)!

∏
n
i=1(α + i −1)!

.

which is known as Ewens distribution.
(Generalization to other processes, like the PY process are available)
And the conditional EPPF for a DP mixture model, induced for a given
number of clusters K = k, is

pDP(ρn = (S1, . . . ,Sk)|K = k) =
1

Const

k

∏
h=1

1

nh

However, it can be shown that this EPPF favours unbalanced partitions
with some small values of nh (look at the inverse dependence on nh) →
this model is inconsistent for clustering!
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CASE 4b: Adding covariates - Grazian (2022+)

Suppose Yt(s) come be represented as an infinite mixture model:

g(yt(s)|π,θ) =
∞

∑
k=1

πt,k(s)g(yt(s)|θk)

where the mixing probability πt,k(s) is the probability that the location s
belongs to component k at time t.

The mixing weights are built similarly to the spatial stick-breaking:

Ft(s) =
∞

∑
k=1

πt,k(s)δθk
s ∈ D , t > 0 where

πt,1(s) = Vt,1(s), πt,k(s) = Vt,k(s)
k−1

∏
j=1

(1−Vt,j(s)) for k = 2, . . .

Vt,k(s) = wk(s,ψ, t,ζ )Vk

Vk ∼ Beta(a,b)

θk ∼ F0.
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A caveat
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Conclusions

Consistently estimating the number of clusters in a Bayesian way is
difficult.

However

consistency can be found for overfitted mixtures

the prior may have an important role

advantage of reducing the number of necessary assumptions and
inputs

easy extension to multivariate setting
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